

An expedient synthesis of 2-substituted naphthalenes from the Baylis–Hillman adducts

Jae Nyoung Kim,* Yang Jin Im, Ji Hyeon Gong and Ka Young Lee

Department of Chemistry, Chonnam National University, Kwangju 500-757, South Korea Received 2 April 2001; revised 23 April 2001; accepted 27 April 2001

Abstract—The reaction of 1, the acetates of the Baylis–Hillman adducts, and primary nitroalkanes 2 in the presence of potassium carbonate in N,N-dimethylformamide afforded 2-substituted naphthalenes 5 in good yields. © 2001 Elsevier Science Ltd. All rights reserved.

The Baylis–Hillman reaction is well known as a coupling reaction of aldehydes and activated alkenes catalyzed by tertiary amines or tertiary phosphines. The reaction with ethyl acrylate serves α -methylene- β -hydroxy esters, which have been transformed into various useful compounds.

Much attention has recently been focused on the regioselective synthesis of substituted naphthalene derivatives.³ Since these compounds have the basic skeleton of many biologically important natural products and pharmaceuticals,⁴ synthetic methods for the naphthalene moiety are highly desired.

In the course of our studies on the chemical transformation of the Baylis–Hillman adducts,⁵ we intended

to develop a method for the preparation of naphthalene skeleton by using the Baylis–Hillman adducts. Our rational design was depicted in Scheme 1: (1) S_N2' -type reaction of nitronate anion, which was generated from primary nitroalkane 2, to the Baylis–Hillman acetate 1; (2) intramolecular S_NAr reaction of 3; (3) elimination of nitrous acid from the 1,2-dihydronaphthalene derivative 4 to give the desired naphthalene 5.

Conjugate addition of nitroalkane to allyl Baylis–Hillman acetates in the presence of NaOH was recently reported by Amri et al,⁶ who have prepared (*E*)-2-alkylidene-1,4-diketones via the Nef reaction of the initially obtained conjugate addition products. Intermolecular S_NAr reaction of nitronate to nitrobenzenes

OAC
$$RCH_2NO_2$$
 (2)

EWG K_2CO_3

DMF, rt

<30 min

$$R = WG = -COOEt, -COCH_3$$

$$R = Me, Et, n-Bu, Ph, COOEt

$$S_NAr$$

$$-HX$$

$$50-60 °C$$

$$R = NO_2$$

$$R = MO_2$$

$$R = MO_2$$$$

Scheme 1.

Keywords: Baylis-Hillman adducts; 2-substituted naphthalenes; nitroalkanes.

0040-4039/01/\$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(01)00687-6

^{*} Corresponding author. Fax: 82-62-530-3381; e-mail: kimjn@chonnam.chonnam.ac.kr

was known,⁷ and elimination of nitrous acid can be achieved readily in the presence of base in *N*,*N*-dimethylformamide;⁸ thus, we think that the reaction in Scheme 1 would be plausible.

For the conjugate addition of nitroalkane to the Baylis–Hillman acetate, Amri used sodium hydroxide in aqueous tetrahydrofuran. However, ester-containing Baylis–Hillman adducts might cause severe hydrolysis problem under Amri's conditions. For such a reason we investigated the reaction conditions including solvent, base and temperature. The use of potassium carbonate in N,N-dimethylformamide was found to be the best conditions for the preparation of 3 from the Baylis–Hillman acetates 1. Moreover, the choice of potassium carbonate in dipolar aprotic solvent, N,N-dimethylformamide, must be beneficial for the next S_N Ar reaction

and the elimination of nitrous acid. From the rational design and preliminary search for the reaction conditions, we could prepare some 2-substituted naphthalene derivatives 5 in good yields in a one-pot reaction from the Baylis–Hillman acetates and report herein the preliminary results.

As shown in Table 1, the reaction of Baylis–Hillman acetates 1 and primary nitroalkanes 2 (2 equiv.) in the presence of K_2CO_3 (3 equiv.) in DMF afforded the corresponding naphthalenes 5. Regardless of the electron withdrawing group on the Baylis–Hillman acetates, ethoxycarbonyl- (entries 1–7) and acetyl-(entries 8–9) naphthalenes 5 were obtained in good yields. When we use the Baylis–Hillman acetate derived from acrylonitrile, the corresponding naphthalene was isolated in trace amounts. 10

Table 1. Synthesis of naphthalene derivatives 5

entry	substrate (1)	conditions	product (5)	yield (%) (mp, °C)
1	CI OAc COOEt	CH ₃ CH ₂ NO ₂ (2 equiv) K ₂ CO ₃ (3 equiv)	COOEt	75 (52-53)
2	CI OAC COOEt	DMF, rt-50 °C, 17 h CH ₃ CH ₂ CH ₂ NO ₂ (2 equiv) K ₂ CO ₃ (3 equiv) DMF, rt-50 °C, 14 h	CI CH ₃ Sa COOEt	73 (36-37)
3	CI OAc COOEt	$CH_3(CH_2)_3CH_2NO_2$ (2 equiv) K_2CO_3 (3 equiv) DMF, rt-50 °C, 14 h	COOEt 5c CH ₂ CH ₂ CH ₂ CH	67 (47-48)
4	OAc COOEt	$CH_3CH_2NO_2$ (2 equiv) K_2CO_3 (3 equiv) CI^2 DMF, rt-50 °C, 15 h	COOEt CI CH ₃ 5d	68 (79-80)
5	CI OAc COOEt CI 1a OAc	PhCH $_2$ NO $_2$ (2 equiv) K $_2$ CO $_3$ (3 equiv) DMF, rt-60 $^{\rm o}$ C, 8 h	COOEt Ph 5e COOEt	62 (121-122)
6	CI CI 1b	O_2 NCH $_2$ COOEt (2 equiv) K_2 CO $_3$ (3 equiv) CI 2 DMF, rt-60 $^{\rm o}$ C, 15 h	CI COOEt 5f	79 (87-88)
7	COOEt	O_2 NCH $_2$ COOEt (2 equiv) K $_2$ CO $_3$ (3 equiv) DMF, rt-60 o C, 6 h	COOEt 5g	89 (77-78)
8	OAC COCH ₃	$CH_3CH_2NO_2$ (2 equiv) K_2CO_3 (3 equiv) DMF, rt-50 °C, 10 h	CH ₃ 5h	67 (35-36)
9	CI CI 1d	$CH_3CH_2NO_2$ (2 equiv) K_2CO_3 (3 equiv) $CI^{<}$ DMF, rt-50 °C, 8 h	COCH ₃ CH ₃ 5i	60 (92-93)

The reaction mechanism of the reaction is as follows: (1) tandem nucleophilic addition–elimination reaction (S_N2') of **2** to **1** with high stereoselectivity $(E \text{ major})^{6,9e}$ to give **3**; (2) intramolecular S_NAr reaction of **3** gave the dihydronaphthalenes **4**; and finally (3) elimination of nitrous acid to **5**. The assignment of stereochemistry of S_N2' product **3** was based on spectroscopic evidence. The chemical shift trends were consistent with those reported in the literature. The first step, S_N2' -type reaction of nitronate to the Baylis–Hillman acetates, can occur below room temperature in short time. However, the following S_NAr reaction was slow at room temperature. Gentle warming up to ca. $50-60^{\circ}C$ quickens the reaction.

The reaction of **1a** and nitroethane is typical: To a stirred solution of well-ground potassium carbonate (414 mg, 3 mmol) in *N*,*N*-dimethylformamide (3 mL) was added nitroethane (150 mg, 2 mmol) at rt and stirred during 10 min. A solution of **1a** (317 mg, 1 mmol) in DMF (1 mL) was added dropwise during 20 min at the same temperature. After stirring for 16 h at 50°C, the reaction mixture was poured into dilute HCl solution. After the usual work-up process, **5a** was isolated by silica gel column chromatography (hexane/ CH₂Cl₂, 5:1) as a white solid, 187 mg (75%).¹¹

In conclusion, we have disclosed a facile synthetic method of 2-substituted naphthalenes from the Baylis–Hillman acetates. This is the first example of applying the S_NAr concept in the Baylis–Hillman chemistry to form the cyclic compounds to the best of our knowledge. Related application of the tandem $S_N2'-S_NAr$ -elimination chemistry on the Baylis–Hillman adducts are currently underway.

Acknowledgements

This work was supported by Grant No. 2000-1-12300-004-3 from the Basic Research Program of the Korea Science & Engineering Foundation. The support of the Korea Basic Science Institute (Kwangju branch) is also acknowledged.

References

- (a) Drewes, S. E.; Roos, G. H. P. Tetrahedron 1988, 44, 4653; (b) Basavaiah, D.; Rao, P. D.; Hyma, R. S. Tetrahedron 1996, 52, 8001; (c) Ciganek, E. In Organic Reactions; Paquette, L. A., Ed.; Wiley: New York, 1997; Vol. 51, pp. 201–350.
- (a) Basavaiah, D.; Kumaragurubaran, N.; Sharada, D. S. Tetrahedron Lett. 2001, 42, 85; (b) Yang, K.-S.; Chen, K. Org. Lett. 2000, 2, 729; (c) Chamakh, A.; Amri, H. Tetrahedron Lett. 1998, 39, 375; (d) Basavaiah, D.; Kumaragurubaran, N. Tetrahedron Lett. 2001, 42, 477 and references cited therein.

- (a) Kao, C.-L.; Yen, S. Y.; Chern, J.-W. Tetrahedron Lett. 2000, 41, 2207; (b) Rucker, M.; Bruckner, R. Synlett 1997, 1187; (c) Shibuya, M.; Toyooka, K.; Kubota, S. Tetrahedron Lett. 1984, 25, 1171; (d) Kobayashi, K.; Takada, K.; Tanaka, H.; Uneda, T.; Kitamura, T.; Morikawa, O.; Konish, H. Chem. Lett. 1996, 25; (e) Seong, M. R.; Song, H. N.; Kim, J. N. Tetrahedron Lett. 1998, 39, 7101 and references cited therein.
- (a) Meyers, A. I.; Willemsen, J. J. Tetrahedron Lett. 1996, 37, 791; (b) Medarde, M.; Ramos, A. C.; Caballero, E.; Lopez, J. L. Tetrahedron Lett. 1996, 37, 2663; (c) Katritzky, A. R.; Zhang, G.; Xie, L. J. Org. Chem. 1997, 62, 721 and references cited therein.
- (a) Kim, J. N.; Lee, K. Y.; Kim, H. S.; Kim, T. Y. Org. Lett. 2000, 2, 343; (b) Kim, H. S.; Kim, T. Y.; Lee, K. Y.; Chung, Y. M.; Lee, H. J.; Kim, J. N. Tetrahedron Lett. 2000, 41, 2613; (c) Lee, H. J.; Chung, Y. M.; Lee, K. Y.; Kim, J. N. Bull. Korean Chem. Soc. 2000, 21, 843; (d) Lee, H. J.; Seong, M. R.; Kim, J. N. Tetrahedron Lett. 1998, 39, 6223; (e) Lee, H. J.; Kim, H. S.; Kim, J. N. Tetrahedron Lett. 1999, 40, 4363.
- Chamakh, A.; M'hirsi, M.; Villieras, J.; Lebreton, J.; Amri, H. Synthesis 2000, 295.
- Kornblum, N.; Cheng, L.; Kerber, R. C.; Kestner, M. M.; Newton, B. N.; Pinnick, H. W.; Smith, R. G.; Wade, P. A. J. Org. Chem. 1976, 41, 1560.
- (a) Kim, T. Y.; Kim, H. S.; Lee, K. Y.; Kim, J. N. Bull. Korean Chem. Soc. 2000, 21, 521; (b) Kim, T. Y.; Kim, H. S.; Lee, K. Y.; Kim, J. N. Bull. Korean Chem. Soc. 1999, 20, 1255.
- The use of DBU or sodium hydroxide as a base in THF or aqueous THF has some problems. For the reaction conditions of the conjugate addition of nitroalkanes to Michael acceptor, see the following references: (a) Ballini, R.; Bosica, G.; Damiani, M. Righi, P. *Tetrahedron* 1999, 55, 13451; (b) Ono, N.; Kamimura, A.; Kaji, A. *Synthesis* 1984, 226; (c) Ballini, R.; Barboni, L.; Bosica, G. *J. Org. Chem.* 2000, 65, 6261; (d) Ono, N.; Kamimura, A.; Miyake, H.; Hamamoto, I.; Kaji, A. *J. Org. Chem.* 1985, 50, 3692; (e) Ballini, R.; Bosica, G.; Petrelli, L.; Petrini, M. *Synthesis* 1999, 1236.
- 10. The reaction of 3-acetoxy-3-phenyl-2-methylene-propanenitrile, an example of the nitrile-substituted Baylis–Hillman acetate, and nitroethane in the same reaction conditions gave low yield (5%) of corresponding naphthalene, 4-methylnaphthalene-2-carbonitrile. Instead unidentified complex dimeric mixtures and some (ca. 5%) Z-form of 3, which cannot undergo the next S_NAr reaction due to the stereochemical requirement, were obtained.
- 11. Selected spectroscopic data for **5a**: 187 mg (75%), white solid, mp 52–53°C; IR (KBr) 1711 cm⁻¹; ¹H NMR (CDCl₃) δ 1.46 (t, J=7.1 Hz, 3H), 2.73 (s, 3H), 4.46 (q, J=7.1 Hz, 2H), 7.47–7.95 (m, 3H), 7.97 (s, 1H), 8.89 (s, 1H); ¹³C NMR (CDCl₃) δ 15.04, 20.34, 61.90, 123.89, 126.35, 127.30 (2C from ¹H $^{-13}$ C COSY), 128.34, 128.92, 130.99, 134.62, 135.92, 136.55, 167.29; mass (70 eV) m/z (rel. intensity) 139 (42), 175 (49), 203 (100), 220 (28), 248 (M $^{+}$, 86), 250 (M $^{+}$ +2, 28).